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Completely integrable N -body quantum systems in three 
dimensions 

A 0 Baruti and Yutaka KitagawaraS 
t Department of Physics, University of Colorado, Boulder, Colorado 80309, USA 
$ Department of Chemistry, University of Colorado, Boulder, Colorado 80309, USA 

Received 2 March 198 1 

Abstract. A family of completely integrable three-dimensional N -body quantum systems is 
introduced and completely solved by the dynamical algebras O(3N + 1, 2) and their 
representations. In a particular realisation of these algebras the particles interact by 
N -body ‘Coulomb-type’ potentials. A complete set of commuting integrals of motions, 
their spectra, the energy levels for both discrete and continuous spectra, and their 
degeneracy have been explicitly determined. Relativistic generalisations and applications 
are briefly discussed. 

1. Introduction 

There are a number of exactly soluble many-body problems in one space-dimension, 
i.e. N particles moving in a straight line and interacting with some model potentials (see 
Lax 1968, Calogero 1969, 1971, 1974, Toda 1970, Moser 1965, Olshanetsky and 
Perelomov 1976,1977, Airault etal 1977, Kostant 1980). In three dimensions the only 
known exactly soluble N -body problem is the problem of N-coupled harmonic 
oscillators, and, for N = 2 only, the two-body Coulomb problem. 

In this paper we present a class of exactly soluble N-body problems in three space 
dimensions with non-trivial N-particle interaction potentials which, under certain 
conditions, can also approximate the realistic many-body problems of atomic and 
nuclear physics. However, beyond this, the main virtue of exactly soluble model 
systems is to provide us with a complete list of global quantum numbers, besides the 
usual energy and angular momentum quantum numbers, needed to specify a many- 
body quantum system. And it is interesting that we obtain for our models conserved 
‘good’ quantum numbers which can be taken to be angular momenta of subsystems. 
The way in which various choices of a complete set of commuting operators (csco) 
appear here will also be relevant to more realistic problems. 

Beside the purely theoretical interest, the exactly soluble model systems presented 
here constitute a new starting point of perturbation theory to realistic systems. It is 
perhaps the other extreme to the usual starting point of perturbation theory, namely the 
N non-interacting particles. In the latter case we introduce the configuration mixing to 
account for particle interactions. In our case the starting point is a more rigidly coupled 
system so that we have to introduce a kind of configuration decoupling. These problems 
will be discussed in the second part of these series of papers. 

0305-4470/81/102581+ 14$01.50 @ 1981 The Institute of Physics 2581 
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Because our approach is algebraic and group theoretical, we begin in Q 2 with a 
general discussion of quantum dynamics based on dynamical groups, and then treat 
the details of the soluble models in successive section. 

2. The dynamical group approach to integrable systems 

Our approach generalises the dynamical group methods used in recent years for systems 
like the H atom or the oscillator. The group theory of these relatively simple systems 
has been reviewed in several places (Wybourne 1974, Barut 1972, Barut and Rqczka 
1977, Wulfman 197 1). Originally, the dynamical group properties of quantum systems 
have been obtained from the known quantum mechanical solutions of these systems. 
Once the general features are realised, one can turn the argument around. Quan- 
tisation can be directly based on group representations (‘dynamical group quantisation’ 
(Barut 1977)). More generally stated: quantum systems can be defined from the 
representations of abstract Lie groups (Barut 1980a). We shall now show that ‘every 
Lie algebra and its representation determines in principle a class of completely 
integrable dynamical systems, once the Hamiltonian and other integrals of the motion 
have been physically identified’. 

This approach has certain advantages: 
(i) it provides a coordinate independent treatment, 
(ii) all integrals of motion, including the Hamiltonian, are on the same footing (we 

can define the concept of symmetry with respect to any integral of the motion, not just 
symmetry of the Hamiltonian), 

(iii) it provides a unified treatment of classical and quantum physics, 
(iv) it provides a method of passage to relativistic dynamics, once the Lorentz group 

within the dynamical group is physically identified. (The passage to field theory is also 
possible in principle by the limit N + 00.) The general postulates for a relativistic 
treatment of composite systems have been given elsewhere (Barut 1980b). 

Let L be a Lie algebra with elements {Xg} ,  i = 1, . . . , n ,  and 8(L)  the enveloping 
algebra of L, (essentially polynomicals in X z ) .  A complete set of commuting operators 
(csco) can be chosen in L,  or ;n 8 (L),  or having elements both in L and 8(L) .  Any such 
csco can in principle be identified with the integrals of motion J,,, of a dynamical 
system. A representation n(L) of L, (which automatically extends to a representation 
of 8 (L) on the same Hilbert space) provides us with the space of states which can then 
be labelled by the eigenvalues of csco. Actually, in general, we have to go to the 
enveloping field of L in which besides the polynomial functions of L we may have 
operators like q or 1 / q ,  etc. But this does not change the general procedure. 

The more difficult question is whether the representation n(L) can be realised 
canonically in some underlying phase space T(p, q ) ,  if we wish to  make an identification 
with a mechanical N-body problem, for example. On the other hand, in quantum 
physics, the underlying phase space is not always known. The primary observed 
quantities are the spectral lines, i.e. the spectra of observables, and their intensities. We 
probe an unknown quantum system (atom, nucleus, hadron) by external agents 
(photons, electrons, neutrinos) and try to infer from the response (i.e. spectra) apossible 
internal dynamics, and a phase space, including spin and other internal degrees of 
freedom. Thus in this sense the group theory approach may be more direct and at the 
same time more general than the simple canonical quantum mechanics which has been 
abstracted from macroscopic classical physics. 
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In the models treated here we have both dynamical groups and canonical realisa- 
tions, but the former allow other, more general, realisations or systems and can be 
generalised to relativistic dynamics. 

3. The exactly soluble model systems 

We consider the system of N interacting particles characterised by the Hamiltonian 

l N  
2 m  i = l  

H = - 2 p ?  + U ( r l ,  r2,  . . . , r N ) .  (3.1) 

Here we present two different types of model systems which are completely integrable. 
One is the oscillator-type N-body problem and the other is the Coulomb-type N-body 
problem. The oscillator-type problems are characterised by the potential 

N 

U ( r l ,  . . . , r N )  =% r? + V ( r l ,  . . . , r N )  
i = l  

and the Coulomb-type problems are characterised by 

( 3 . 2 ~ )  

(3.2b) 

where k and < are constants. In order for these problems to have exact analytical 
solutions, the additional term in the potential, V,  must satisfy the equation 

N 

2 r , . V i v + 2 v = 0 .  (3.3) 
i = l  

Namely, the potential V is a homogeneous function of degree -2 .  This is true for both 
the oscillator-type and the Coulomb-type problems. The restriction (3.3) is discussed 
further in § 4. 

The energy eigenvalues and eigenstates of the oscillator-type problems were 
investigated by Gambardella (1975),  using the technique of SU(1, 1) spectrum- 
generating algebra. He did not discuss, however, the degeneracy structure of the 
energy eigenspaces. In this paper, we shall consider mainly the Coulomb-type prob- 
lems which provide also interesting applications to atomic physics (see, for example, 
White and Stillinger 1970). Mathematically similar problems were discussed before in 
the form of the so-called 'H atom in n dimensions' (e.g. Bander and Itzykson 1966, 
Herrick and Sinanoglu 1973, Rasmussen and Salamo 1979). Here we introduce a new 
physical interpretation, namely in the form of an N-body problem in three dimensions, 
We think this is the more proper interpretation because the Coulomb potential in n 
dimensions is not simply l / r  but l / r" -2 .  Using the dynamical group approach, we will 
study both the energy spectrum and its degeneracy structure thus providing a complete 
classification of state vectors. 

We shall first restrict ourselves to the discussion of the system of N distinguishable 
spinless particles. For the application to atomic physics, however, we must also consider 
the system of N identical spin-4 particles, and the strong restrictions imposed by the 
Pauli principle have to be taken into account. This problem will be discussed in a 
subsequent paper. 



2584 A 0 Barut and Y Kitagawara 

We shall see that both the discrete and continuous spectra can be treated in a unified 
manner by our formalism. Furthermore, there is a definite group theoretical procedure 
to extend the theory to the relativistic dynamics. 

4. Spectrum-generating algebra O(2 , l )  and the energy eigenvalues of the system 

We first determine the energy spectrum of an exactly soluble Coulomb-type N-body 
problem using the techniques of the O(2, 1) spectrum-generating algebra. For simpli- 
city of notation we relabel the position variables and momentum operators as follows: 

( X I ,  y1,zl; x2, y2, 2 2 ;  . . ‘ ; XN, YN, ZN) 

~px,,py,,pz,;px~,py,,pzz; ’ .  - ; P X N > P Y N I P Z N )  

(x1, XZ, x3;  x4,  x5 ,  x6; . . . ; X3N--21 X3N-1, X 3 N  1, 

SE (PI, p2, p3; p4, p5, p6; . . ; P 3 N  -2,  p3N-1, P 3 N  1. (4.1) 

We also define 

r2’XkXk p P k P k  r = @  p=.l;;“ (4.2) 
where the summation convention is implied by the repeated subindices, e.g. r 2 =  
X ; t 1  (xk)2. The first result is that the operators 

T 2 = x k P k  -$(3N - 1) T3 = &rp2 + r) + rV (4.3) 

[TI, T2] = -iT3 [T2, T3I = iTi [T3, TiI=iTz (4.4) 

[T,, VI = i2V. (4.5) 

T -1 - 2(rp2-r)+rV 

satisfy the commutation relations of the Lie algebra O(2, 1) 

provided the potential V satisfies 

In (4.4) the generators are so chosen that the ‘compact’ generator T,  has a discrete 
spectrum, while T1 and T2 have continuous spectra. The condition (4.5) is equivalent to 

namely, the potential V is a homogeneous function of degree -2. 
Secondly, the Casimir operator of the O(2, 1) Lie algebra, 

Q&2,1) = T: - T: - TZ (4.7) 

is evaluated to be 

Q&2,1) =A2+2r2V+?(3N-1)(N-1)  

where 
3lv 

11’ = (XiP, - x k P i ) 2 .  
i,k = 1 

In the case 

V = d/r2 d = constant 

(4.8) 

(4.9) 

(4.10) 
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equation (4.8) becomes 

Q&2,1) = A2+2d +$(3N - 1)(N - 1). (4.11) 

It is well known that the operator A2 provides the eigenvalue equation (Erdelyi et a1 
1953, Grynberg and Koba 1964) 

(4.12) 

We now consider the following Hamiltonian equation for the stationary states of our 

A21A) = A (A + 3N - 2)IA). 

system, 

H 8 = [ 1 (  2m i = ~  ‘f p Z ) - - l (  i ‘f =. 1 r?)-1’2+K( i = l  ‘f r Z ) l ] 9 = E 9  (4.13) 

where K is a constant. 
We introduce the associated equation 

0 9 = [ r ( H - E ) ] 8 = 0 0 .  (4.14) 

With (4.3) and (4.13), the operator 0 can be expressed as a linear combination of the 
O(2, 1) generators as 

0 = (&-E)T3+(&+E)T1+l. (4.15) 

In equation (4.15), we have replaced K by d/m. We now diagonalise the operator 0 as 
follows. Defining 

@ e - i@Tzqr  (4.16) 

6 E e-’@T2@ ei@T* (4.17) 

we obtain the transformed equation 

6 @ = 0 .  

The transformed operator 6 is calculated to be 

(4.18) 

6 = (&-E)[(cosh 8)T3+(sinh 8)T,]+ [(sinh 8)T3+(cosh 8)T1]+l. 

(4.19) 

4.1. Discrete spectrum 

Here we diagonalise T3 which has a discrete spectrum. If we choose 

E + 1/2m 
E - 1/2m 

tanh 8 = (4.20) 

we obtain from (4.18) and (4.19) the simple equation 

[(-2E/m)1’2T3 -[I@ = 0. (4.21) 

In the D+ representation of the O(2, 1) algebra (the discussion can be found in 
Wybourne (1974), Barut (1972), Barut and Rgczka (1977)), we can write the joint 
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eigenvalue equations of Q&,*) and T3 as 

Q&z,1J4,s>=4(4 +1)1+,~> 

T314, s>  = (-4 +&, s> 

where s is a non-negative integer and 4 is a real negative number. 
Combining equations (4.1 l ) ,  (4.12) and (4.22), we obtain 

4 (4 + 1) = A (A + 3N - 2) + 2d + 2(3N - 1)(N - 1). 

Solving this equation for 4, we can write the eigenvalue of T3 as 

n = - + + s  

= s + 2 +[A (A + 3 N  - 2) + 2d +;(3N - 2)2]1’2 

s = o ,  1 , 2 , 3 , .  . . .  
Comparing equation (4.21) with (4.23), we obtain 

l(-m/2E)”’ = n. 

Thus we have obtained the energy spectrum 

E,, = -12m/2n2. 

In the special case, when 

d = O  

the principal quantum number n has a very simple form 

n = s + A  + i(3N - 1) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

and fo rN = 1 and d = 0, equation (4.26) reduces to  the Balmer formula of the hydrogen 
atom. 

4.2. Continuous spectrum 

In equation (4.19) we can also diagonalise the generator T1 instead of T3.  In this case 
we choose the tilting angle 0 such that the coefficient of T3 vanishes, namely, 

E - 1/2m 
tanh 0 = 

E + 1/2m 
(4.29) 

Whence sinh 6’ =(E  - 1/2m)/(2E/m)”’, cosh 0 = (E + 1/2m)/(2E/m)”2 and equa- 
tion (4.19) becomes 

[(2E/m)1’2T1 +SI+ = 0. (4.30) 

Denoting the real continuous spectrum of T1 by k ,  T , / k )  = k ( k ) ,  we obtain 

Ek = m12/2k2 --OO < k < +a. (4.3 1) 

5. Dynamical algebra O(3N + 1,2) and a classification of degenerate states 

The spectrum-generating algebra (4.3) does not solve the complete degeneracy of levels 
of the system, because we have not yet studied the complete set of commuting operators 
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(csco). Since we are restricting our discussion to the system of N distinguishable 
spinless particles, we take the angular momentum of each particle as a constant of the 
motion rather than the particle exchange operators P,, (which mix the states of different 
angular momenta of particles). 

In order to exhibit the csco we extend the O(2, 1 )  algebra to a larger algebra 
O(3N + 1,2)  for the special case 

v = 0. (5.1) 
We find that the operators LAB in equation (5.4) satisfy the commutation relations of 
the Lie algebra O(3N + 1, 2 )  

with 
[LAB, L C D 1 =  -i(gACLBD +gBDLAC -gADLBC - & C L A D )  (5.2) 

+ + >  (5.3) - -  
g M M = ( T ,  ; , * * . >  3N' 3Ntl' 3N+2' 3 N + 3  

g M N  = 0 M Z N .  

A basis of this Lie algebra is given by the operators 

A + L,, = X,P, - X,P, 

A, L1.3~ + 1 = 4Tp -P,xkPk + i$(N - 1)P, - 44 
MI =L1,3N+2=4Tp2-P1XkPk +i$(N - 1)P, +$4 
r] " L ] . 3 N + 3  = 'PI 

T2 = L 3 N + 1 , 3 &  + 2  =xkPk -ii(3N - 1) 

T3 ' L 3 ~ + 2 , 3 ~ + 3  = $(rp2 + I) 
TI = L 3 N + 1 , 3 N + 3  - -I( 2 r p 2 - - r )  i , j ,  k = 1 , 2 , .  , . ,3N.  (5.4) 

Some of the second-order Casimir operators of the O(3N + 1,2)  and its subalgebras are 

Q&2,1) = T:  - T:  - Tg = A2 +:(3N - 1)(N - 1)  

= Q&3N) +$(3N - 1)(N - 1) (5.5a) 

(5.5b) 

(5.5c) 

= -$(3N - 1)(3N + 1) (5 .5d)  

Q ~ ( 3 N + 1 , 2 ) = A 2 + A k A k - M k M k - r k r k  +T:  -T:  -Ti: 

= -$(3N - 1)(N + 1) .  (5.5e) 

We shall now show that the set of Casimir operators of the following subgroup chain 
(5.6) gives a complete set of commuting operators of our system. 

A h 

O(3N + 1,  2 )  = O(3N) x O(2, 1) 

U 

( 5 . 6 ~ )  



2588 A 0 Barut and Y Kitaga wara 

O(3N + 1,  2)  2 O(3; + 1 )  x Oi2) 

U 

(5.6b) 

( 5 . 6 ~ )  

Here we also indicated the quantum numbers due to these subgroups. 

O ( 3 )  are 
In equation (5.6c), Casimir operators of 0 ( 3 N ) ,  O(3N - 3) ,  O(3N - 6 ) ,  . . . 0 ( 6 ) ,  

where j = 1 , 2 , .  . . , N and A 2 =  A&, L: = A:. 
In terms of harmonic polynomials (Erdelyi et a1 1953, Grynberg and Koba 1964), 

one can construct an orthonormal set of simultaneous eigenfunctions of the Casimir 
operators which label all the subgroups in equation ( 5 . 6 ~ ) .  We denote these poly- 
nomials by 

HA(y71,m/51,627*. .  ,(?A” (5.8) 

with y = {y2, y3, . . . , yN}, 1 = ( 1 1 ,  12, . . . , lJv}, m = {m 1, m2, . . . , mN}  and ti = XJr .  
These quantum numbers must satisfy 

A, =hj-1+1, +2yj yj = 0, 1, 2, . . . 
and 

( 5 . 9 ~ )  

In equation (5.8) we regarded yj as a quantum number and Ai as simply a convenient 
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name for the sum in equation ( 5 . 9 ~ ) .  The polynomials (5.8) are homogeneous of 
degree A and satisfy the Laplace equation 

For each A ,  there are 

(A +3N-3)! 
A ! (3N - 2)! 

d,, ( N )  = (2A + 3N - 2) (5.13) 

linearly independent polynomials. Enumeration of different sets of quantum numbers 
allowed by equation (5.9) leads to equation (5.13). 

In the subgroup chain (5.6), we notice that Qi(3Nj and Q&) are labelled by the 
same quantum number A ,  and Q&3N+1j and T3 are labelled by the same quantum 
number n. We can take the basis to be the simultaneous eigenvectors of the Casimir 
operators of the subgroups shown in equation (5.6). Thus the state vectors are denoted 

1 f i y h ) ~ I f i ;  y,v, YN-I, . . . , yz; l N ,  L - 1 , .  . . 1,; mN, " - 1 , .  . . , md.  (5.14) 

by 

They satisfy the eigenvalue equations 

T3/fiylm) = nliiylm) 

12;lfiyZm) = A, (A, + 31 - 2)lfiylm) 

L?/fiyZm) = I ,  ( I ,  + 1)liiylm) 

(L,),Ifiylm)=m,lfiylm). 

(5.15a) 

(5.15b) 

( 5 . 1 5 ~ )  

(5.15d) 

The vectors lriylm) are basis states of the representation of the dynamical group 
O(3N + 1,2).  The Schrodinger states Inylm) are written by virtue of equation (4.16) as 

jnylm) = e'BTzIfiylm). (5.16) 

Wecan of course diagonalise other sets of operators, but the diagonalisation shown 
above is convenient for many applications because the angular momenta of individual 
particles are retained. Because of equations (5%)  and (5.5c), we can write the weight 
diagram given in figure 1. Each point in the diagram represents a subspace of state 

I / 

ON-1112 ( 3 N - 1 ) / 2 + 2  l3N-1)/2+4 n 

Figure 1. The weight diagram of the dynamical algebra O(3N + 1, 2). 
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vectors which are further classified by the quantum numbers yNPl, Y N - 2 , .  . . , y 2 ;  lN, 
lN- l ,  . . . ll; mN7 W L , , - ~ , .  . . , ml.  By O(2, 1) raising and lowering operators, a state 
vector can be transformed into another which has the same A but different n. These 
O(2, 1) transformations are represented by a horizontal line in figure 1. States on each 
vertical line give a basis set of the degeneracy group O(3N + 1). In the next section, we 
determine the dimensions of the representations of the degeneracy group. 

6. Dimensions and representations of the degeneracy group O(3N + 1) 

In this section we calculate dimensions of degenerate levels, from which we determine 
the representations of the degeneracy group O(3N + 1). The dimension of a degenerate 
level can be obtained by counting the number of states having the same principal 
quantum number n. Comparing the result with the dimension of a given representation 
of O(3N + l), we can identify the representation of our degeneracy group. We can use 
Weyl’s formula (Wybourne 1974, ch 14) for a given representation to calculate its 
dimension. 

The dimension of O(3N + 1) labelled by n is calculated by summing the dimensions 
of allowed representations of its subgroup O(3N) labelled by A ; 

where D, ( N )  and dA ( N )  are dimensions of the O(3N + 1) and the O(3N) represen- 
tations, respectively. The expression for dA ( N )  is given in equation (5.13). We obtain 

D, (1)=n2 D,(2) =&n(n2-?)(n2-i) .  . . . (6.2) 
Some numerical values are given in table 1. 

Table 1. Values of D, (N), ( k ,  = n -4(3N - 1)). 

N = l  N = 2  N = 3  N = 4  

0 1 1 1 1 
1 4 7 10 13 
2 9 27 54 90 
3 16 77 210 442 
4 25 182 660 1729 

On the other hand, we can use Weyl’s formula to calculate the dimensions of the 
representations of a compact group (Wybourne 1974, ch 14). We consider the special 
representations of O(3N + 1) denoted by 

[kl, 0, 0, 0 ,  . . .I for N even. 
( - N - l )  times 
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Here we used Cartan-Weyl labelling scheme (Wybourne 1974, ch 12) for O ( 3 N  + 1). 
For the representations of (6.3), Weyl’s formula leads to expressions (Wybourne 1974, 
ch 14) 

;(3N+1) w: 
D [ k l , O , O , O  ,... ] = (A) N odd 

i=2 g : - g z  

where 

gi = ; ( 3 N + l ) - i  w1= k l  +g ,  

These equations give exactly the same results as those in table 1;  

Dn(N) =D[n-&3N-1) ,0 ,0 ,0 ,  3 N odd 
U 

{33N + 1)- 1) times 

D n ( N I  =D[n-4(3N-1),0,0,0, I N even. 
+ 

{@ - 1) times 

(6.4) 

Hence the representations of the degeneracy group O(3N + 1) can be denoted by 

{$(3N + 1) - l} times - 
[n -4(3N - l), 0, 0 ,  0,  . . .] N odd 

{$N - 1) times 
& 

[a -4(3N - l ) ,  0,  0,  0,  . . .] N even. 

In another notation using Dynkin diagrams (Wybourne 1974, ch 12), these are 

4 

4 

- --< for N odd 

o----o---o--- .6 for N even. 

(6.7) 

7. More about the dynamical algebra for N = 2 

In equation (5.4), we presented a realisation of the O ( 3 N  + 1 , 2 )  algebra. ‘There is 
another realisation of the O(3N + 1 , 2 )  given by Kyriakopoulos (1963).  It is interesting 
to compare these two. Here we restrict our discussion to the case of N = 2,  the O(7, 2)  
algebra. Kyriakopoulos realisation of the O(7, 2)  is given by operators 

t L,, = -i(a:a, - u p a n )  
~ , ~ = 4 i ( a ~ a ~ a ~  i t  -2a:a:ap-5a8 + a m )  

L a9 =-L( a,a,a, + + -2aLaLa, -5ah - a a )  
cu ,p ,p=1,2  , . . . )  7 t 5  Lg9 = apap +z (7.1) 
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In the above expressions summation is assumed over repeated indices. The Boson 
creation and annihilation operators a i ,  ap are used and they satisfy the commutation 
relations 

[aa, 4 1  =&, [a,, a@] = [ah, a ; ]  = 0. (7.2) 

We now define a new set of creation and annihilation operators which also satisfy 

bt 7 - -a7. (7.3b) 

In order to construct representations, we choose basis states of the form 

lnln2n3; n4nsn6; n7) = (nl!n2!n3!n4!ns!n6!n7!)- b 1b~”zb:“3b~~bT”5b~hb:n7)0)  

where the operators b i  operate on the vacuum state IO). 
We try to express the state vectors (nlylm) in equation (5.14) in terms of basis states 

In ln2n3; n4n5n6; n7). Namely, we construct the simultaneous eigenvectors of the 
operators L89, Q&, L&I ,  L&), L I Z ,  L45, where 

1 / 2  i n  

(7.4) 

S 6  

Q&6)  = c L$  L?,, =L:2 +L:3 +L;3 Lt2) =LjS+Lj6+L:6 (7.5) 
1 = 1 / = 2  

and they satisfy eigenvalue equations 

(7.6) 

(7.7) 

17.8) 

(7.9) 



Completely integrable N-body quantum systems 2593 

5 on the basis vectors lnln2ns; n4n5n6; n7), we find the following results. For n = 5,  

In” = 2, 7’2 = 0, S(1), S(2)) = 1000; 000; 0). 

In“ =$, y2 = 0, Pl( l ) ,  s(2)) = 1100; 000; 0) 

I:, 0, p-1(1), s(2)) = 1010; 000; 0) 

If, 0, s ( l ) ,  Pl(2)) = 1000; 100; 0) 

I;, 0 ,  s( l ) ,  PO(2)) = 1000; 001; 0) 

I f ,  0, s ( l ) ,  s(2)) = 1000; 000; 1). 

7 For n = T ,  

li. 0, P d ) ,  s(2)) = 1001; 000; 0) 

I$, 0, s( l ) ,  p-1(2)) = 1000; 010; 0) 

( 7 . 1 0 ~ )  

(7.10b) 

In these equations, ~ - ~ ( 2 )  means l2 = 1, m2 = -1, etc. In general, lii, y2, 11m1, 121122) is 
expressed by a linear combination of basis vectors Inln2n3; n4n5n6; n7),  for example 

I;, 0, $(I), do(2))=(1/J3))000; 110; 0)-(2/3)”21000; 002; 0) 

I % ,  2, s ( l ) ,  s o ) )  

= ( l / J3 ){p lo ;  000; 0)-jooo; 110; O)} 

+ (l/JZ){jOO2; 000; 0)- 1000; 002; 0)) (7.11) 

For a realisation of the dynamical algebra given by equation (5.4), we identically 

(7.12) 

However, for the Kvriakopoulos realisation, equations in (7.12) do not hold identically. 
They hold as operator identities for state vectors in equations (7.10), (7.1 1). 

The realisation of 0 ( 7 , 2 )  discussed in § 5 and the Kyriakopoulos realisation with 
basis vectors Inln2n3; n4n5n6; n7) ,  both correspond to the special representation 
designated by 

(7.13) 

have the relations 
2 25  2 15 

Q&7, = Lw -4 Q&6) = Qo(2.1) - 4. 

[ n  -? ,o ,  O , O ,  . . .I. 

8. Conclusions 

We have completely solved a family of three-dimensional N-body problems at the 
quantum level. The corresponding classical problem is also soluble by using Poisson 
brackets (Barut 1980a). The results have been given for a particular choice of the 
complete set of commuting integrals of the motion, but our group theoretical procedure 
suggests how to choose many other csco’s appropriate for other applications. 

As these systems represent to our knowledge, the first non-trivial three-dimensional 
integrable N-body problems, one can learn quite a bit about the general properties of 
integrable N-body quantum systems in general. Moreover, they can be taken to be the 
‘unperturbed’ problem for a new perturbation theory for more realistic N-body 
problems in atomic and nuclear physics. These and other generalisations will be 
reported in subsequent work. 
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